Jump to content

Joel Pierre

Basic Member
  • Posts

    84
  • Joined

  • Last visited

Everything posted by Joel Pierre

  1. Here is a link where to download the english manual for Bolex projectors (type G) : Bolex Projector G User Manual For each film format, you need a corridor pad and a lens fits the size of the film (for 16 mm and 9.5 mm, the lens may be the same).
  2. What are the changes to made on a Bolex H8 REX (1962), so that it can turn in Ultrapan8? In addition to the exposer window and the view finder, It should also, I suppose, change the adapter plate lenses to increase the focal length of 2.2 mm and focus it on the middle of the width of the exposed film?
  3. No, unfortunately I do not have access to the motor. One of the screw holding the metal plate to the base of the projector, is totally jammed. I'm not able to unscrew. The abnormal noise of the projector seems to depend on the speed. It appears from a certain speed and beyond a higher speed, it disappears, and reappear if the speed decreases.
  4. I also have other 16 mm projectors : Bolex S-221, S-321, Bauer P5 and P8. The Bolex S is splendid (and very heavy) :
  5. But I have removed the old grease and replaced with new. I added oil to the bearings. When I turn by hand, it makes no noise. But maybe it should not put oil in the bearings? I have another projector Bolex G916 of the thirty years, much older than this one, that does not make this noise.
  6. I just bought a Bolex G3 projector. It seems to have very little use. It must date from 1950. I disassembled for lubrication (grease and oil). The mechanism seems in good condition. When I do turn the mechanism with the knob (8), everything seems normal, no special resistance. When I run the motor without driving the mechanism (release mechanism 10), the engine is running quickly without unwanted noise, but when I train the mechanism with the motor, the projector makes a terrible noise, but that is not continuous and systematic. The noise is sometimes normal, but it does not last. Loud noise comes quickly. It seems that there is something that resonates. I have two other projectors Bolex (G916 and G16), almost identical mechanically, that does not make all that noise. The projector is “empty” (without film). What could be causing this noise? Sound captures : motor_only.mp3 motor_and_mechanism.mp3
  7. If I understand correctly, it is to take pictures with a camera and not a movie? To do this, it would be better to use a 16 mm camera (or 35 mm) to get a decent picture. But even with a 35mm camera used in still images, the result will not be good. The cameras are made for cinema whose rapid succession of images hides the flaws of the film.
  8. Wonderful Éric Rohmer films recently reissued on Blu-ray Shot in 16 mm: La femme de l’aviateur (1981) Le rayon vert (1986) Quatre aventures de Reinette et Mirabelle (1987) L'arbre, le maire et la médiathèque (1993) Les rendez-vous de Paris (1995)
  9. How to adjust the focus of the viewfinder lenses of a Bell & Howell camera Filmo 70 DL so that what appears in the viewfinder remains sharp when changing lens? I have two viewfinder lenses, one is for the focal 1", the other for the 0.7". If I set the viewfinder to get a sharp image with one of the lenses, with the other lens, the image is completely blurred. Viewfinder lenses contain two lenses, one has two convex faces, the other has a flat surface and the other convex. How to position inside the lenses?
  10. Whoever runs this site is a former repairman Nizo and Bauer. He still has the parts and make the repairs. http://www.cine-super8.net/
  11. Agfa Movexoom 10 MOS Electronic
  12. Leicina Special Leicina Super RT1 Zeiss Ikon Moviflex GS8 Nizo Professional Bauer A512 Rollei SL84 Bolex 160
  13. Bolex 155 Spare parts and service instructions (PDF 89 pages, 72,6 Mo) : http://dossierpublic.free.fr/Documents/Bolex_155_Spare_parts_and_service_instructions.pdf
  14. http://www.filmkorn.org/faszination-cinemascope/
  15. Lenses for Bolex 16mm Cameras March 21, 2007 -- Bolexcollector.com The following technical information is taken from a 1974 bulletin, published by Paillard Inc., NY, explaining the use of RX mount lenses with the Bolex H16. http://www.bolexcollector.com/articles/07_03_21.html Among the lenses for 16mm Bolex cameras are some designated for use on non-reflex 16mm cameras only, some which are usable on reflex and non-reflex models, and some designated RX types, meaning they can be used on Bolex 16mm cameras with reflex viewing only. Since all these lenses have the same "C" type thread (1" diameter, 32 threads per inch), the question naturally comes up regarding the difference between the various types and whether or not other makes of lenses can be used on Bolex 16mm cameras. Since the mechanical distance from the filmplane to the lens seat appears to be longer on reflex cameras, the opinion expressed most often is that RX and "C" mount lenses are adjusted for a different lens seat-to-filmplane distance. This, however, is not so. Figure 1. RX and standard C mount lenses. All Bolex lenses (Figure 1), whether RX or not, are adjusted for the same back focus and form an image at exactly the same distance of 17.52mm (.690") from the lens seat when set at infinity, providing there is nothing but air between the rear element of the lens and film. All these conditions are met in non-reflex cameras. In reflex cameras, on the other hand, part of the space between lens and film is filled with the prism, which reflects part of the light into the reflex finder. The light which comes out of the lens no longer travels in air only. Figure 2. Light is refracted by the reflex prism. The light (Figure 2) which would normally form an image at A, enters the front surface of the prism where it is refracted (bent), and then comes out of the glass at the rear surface where it is refracted again, but in the opposite direction. As a result, the image is now formed at B, at a distance of 20.76mm, which explains why the mechanical distance in a reflex camera is longer. Figure 3. Distance of image formed by lens is increased by reflex prism. This change in the image distance is caused completely by the prisms and happens to any lens, whether RX or C (Figure 3), wide angle, telephoto, zoom, which explains why some lenses, like the Macro Switar 75mm, Macro Yvar 150mm, Pan Cinor 85, can be used on reflex cameras as well as on non-reflex models without an adjustment of any kind. We can, therefore, state the following facts: Without the prism, all the lenses form the image at 17.52mm -- with the prism, at 20.76mm. Any 16mm lens adjusted for the standard "C" mount distance of 17.52mm will properly focus on all Bolex H16 cameras, whether reflex or non-reflex models. All Bolex H-16 cameras, whether reflex or not, have the same opticaldistance from the lens seat to the filmplane. Since all lenses adjusted for 17.52mm form the image at 20.76 when used in a reflex camera, the above statements still do not explain why special RX lenses are necessary. To find the answer, we must discuss the optical correction of lenses. In an optically well-designed lens, the various faults or aberrations, such as chromatic, spherical aberrations, coma, astigmatism, etc., are minimized to a degree where they are no longer visible and objectionable on the film. As an example, let's take spherical aberration, which is the fault of a single lens where light rays passing through the edge of a lens form an image closer to the lens than light rays passing near the center (Figure 4). Figure 4. Spherical aberration. In a lens corrected for spherical aberration, all light rays meet at the same point, form the image at the same distance (Figure 5). Figure 5. A lens corrected for spherical aberration. "Regular" 16mm lenses are designed to have a minimum amount of spherical aberration when the light behind the lens travels in air only. When we add the prism to such a corrected lens, light rays entering the edge of the lens reach the prism at a different angle than light rays passing near the center. They are refracted differently and, as a result, form the image in a different plane (Figure 6). The prism has re-introduced spherical aberration, resulting in a loss of sharpness and contrast when used on a reflex camera. Figure 6. Spherical aberration introduced by the reflex prism. Overcoming this loss of quality was the purpose of designing special RX lenses, which are lenses with a 17.52mm back focus but designed to provide maximum quality when combined with the prism (Figure 7). If such an RX lens is mounted on a non-reflex camera with a 17.52mm back focus, the image will focus properly but will show a loss of sharpness and contrast, at least at the larger apertures. Figure 7. Aberration of RX lens corrected by reflex prism. While the description up to now explains the difference between "regular" and RX lenses, it still does not answer why it is possible to use some lenses on either camera. While the prism affects the optical correction of every lens, the loss of sharpness and contrast on many lenses is so small that it is not visible on the film. This applies to most longer focal length lenses, such as the Macro Switar 75mm, Macro Yvar 150mm and some zoom lenses like the Pan Cinor 85. On other lenses, a loss of definition may be visible at maximum aperture, but will be eliminated by simply closing the diaphragm one or two stops down. There is no definite rule to indicate which lenses are usable since this depends on many factors, such as the size of rear element, position of rear element to the prism, focal length of lens, aperture or general design of lens. A film test is necessary to determine the quality or loss of quality. If the quality is unsatisfactory, an adjustment in the back focus does not solve the problem. 1"Bolex Product News From Paillard," No. 5, (New York: Paillard Incorporated, June 25, 1974).
  16. What it is better to use to lubricate Bolex gears (here a Bolex G16 projector) some of them are made ​​of a material color "Chocolate" which does not appear to be in metal? - Nothing at all? - Oil? - Grease?
  17. Thank you for all these informations that I'll study carefully. :)
  18. I have disassembled, cleaned and lubricated my camera. The receive spool is turning. This problem seems solved. The hardest part is reassembling the front. How to ensure that the shutter is well positioned with the advance of the film? Is there a way to do that for sure or is it just a fluke? How to clean the mirror and the frosted without damaging them?
  19. I recently acquired a 9.5 mm Pathé Webo M that I would clean and lubricate. Would there be a tutorial showing how to dismantle this type of camera?
  20. The purchaser of this Moeller Anamorphot made ​​a very good buy, it seems.
  21. I have other Bolex cameras. I had used it for low-value, to learn how to disassemble and lubricate other. What I feared was that the removal of the mainspring does entail such inconvenience. Thank you for your advice.
  22. I turned the square axis of the spring with a wrench. There is very little resistance and when I release the wrench, the return spring does a quarter turn (regardless of the number of revolutions of the axis). The spring winding mechanism seems properly mounted.
  23. I also think that the spring is relaxed. It is very low. As unfortunately I do not have the necessary tools to restore power, I fear that the camera is ruined. http://dossierpublic.free.fr/Media/BolexB8/BolexB8.html
×
×
  • Create New...